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PORTFOLIO SELECTION WITH HYPERBOLIC

DISCOUNTING AND INFLATION RISK

Byung Hwa Lim*

Abstract. This paper investigates the time-inconsistent agent’s
optimal consumption and investment problem under inflation risk.
The agents’ discount factor is governed by hyperbolic discounting,
which has a random time to change. We impose the inflation risk
which plays a crucial role in long-term financial planning. We derive
the semi-analytic solution to the problem of sophisticated agents
when the time horizon is finite.

1. Introduction

We consider the Merton’s portfolio selection problem of time-inconsistent
agent who randomly changes her time preference. The agent’s subjective
discount factor follows a jump process which has a Poisson distribution.
We call this time preference as a hyperbolic discounting, and it implies
that after the preference change, the future selves behave differently
from the current self. The sophisticated agent who has a hyperbolic dis-
counting takes into account her preference change in deciding the opti-
mal consumption and investment. So even with hyperbolic discounting,
the optimal controls are time consistent. The portfolio selection prob-
lems of the sophisticated agent are well studied in [9], [4], [10], [6], [11],
[12], and [7].

In this paper, we extend the model into the problem under infla-
tion risk. The inflation risk plays an important role in long-term finan-
cial planning. To hedge the risk, there exists an inflation-linked index
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bond market in many countries(e.g., Treasury Inflation-Protected Secu-
rities(TIPS) in the US). As studied in [2] and [1], the index bond helps
for long-term investment. [5] and [8] also investigate the roles of index
bond in a life-insurance decision. In this paper, we incorporate the in-
flation risk to the sophisticated agent’s portfolio selection problem. In
finite horizon, the integro-differential equation for the solution is de-
rived. Moreover, we provide the explicit solution when the time horizon
is infinite.

The paper is organized as follows. Section 2 introduces the preference
of the sophisticated agent and wealth dynamics in the presence of infla-
tion risk. Section 3 provides the value function and its HJB equation.
The analytic solutions are given in Section 4. Section 5 concludes.

2. Model setup

Financial Market. We consider continuous-time economy in the pres-
ence of inflation risk. The financial market contains a riskless asset, risky
asset, and index bond. A risk-free asset, Rt, has nominal interest rate
R > 0 and risky asset, St, follows geometric Brownian motion with
constant coefficients µs and σs, which evolves according to

dS(t)/S(t) = µsdt+ σsdW (t),

where W (t) is a standard Brownian motion under the probability space
(Ω,F ,P). We suppose the agent faces an inflation risk and the price
process, P (t), is given by

dP (t)/P (t) = µpdt+ σp(ρdW (t) +
√

1− ρ2dZ(t)),

where µp and σp are constant drift and volatility of price process, and
Z(t) is another Brownian motion under (Ω,F ,P) which is independent
of W (t). The correlation between a price process and a risky asset is
given by ρ ∈ [−1, 1]. Then the dynamics of index bond, dI(t), is given
by

dI(t)/I(t) = r+dP (t)/P (t) = (r+µp)dt+σp(ρdW (t) +
√

1− ρ2dZ(t)),

where r > 0 is a constant real interest rate. Thanks to the index bond,
the inflation risk is hedgeable in the economy and the financial market
is complete.

Now, we denote by X̄(t) the agent’s nominal wealth dynamics, c̄(t)
the nominal consumption rate at time t. We also denote by π0(t), π1(t),
and π2(t) the portfolio ratios for riskless asset, risky asset, and index
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bond, respectively. For feasibility, we assume that c̄(t), πi(t), i = 0, 1, 2,
are Ft-progressively measurable and satisfy the following conditions:

∫ T

0
c̄(t)dt <∞ a.s.

∫ T

0
π2
i (t)dt <∞ a.s.

Then the agent’s nominal liquid wealth, X̄(t) is unfolded by

(2.1) dX̄(t) = π0(t)X̄(t)dBt/Bt+π1(t)X̄tdIt/It+π2(t)X̄tdSt/St−c̄(t)dt

Preference. We suppose the time-inconsistent agent has a constant
relative risk aversion(CRRA) utility defined by

u(c) =
1

1− γ
c1−γ , γ > 0, γ 6= 1,

where γ represents the level of risk averseness. To incorporate time-
inconsistent preferences, we consider a hyperbolic discounting. As illus-
trated by [9], the agent behaves differently in her future life periods so
future selves has different discount factors as follows.

(2.2) D(t, s) =

{
e−δ(s−t), s ∈ (t, τt),

βe−δ(s−t), s ∈ (τt,∞),

where δ is the standard subjective discount factor. β is the degree
of utility loss between current self and future selves due to the time-
inconsistent preference. So it represents propensity for instantaneous
satisfaction which satisfies 0 < β ≤ 1. τt is a random time to switch
into the future selves with different discounting, and it follows a Poisson
process with a constant intensity λ > 0. Thus, for given s > t, the
probability for preference change is defined by P(τt > s) = 1− e−λ(s−t).
Notice that for λ = 0 or β = 1, the time-preference is exactly same as
the time consistent preference with the subjective discounting rate δ.

We will consider three kinds of agent: one time-consistent agent and
two time-inconsistent agents who are näıve and sophisticated. The näıve
agent believes his future selves are time-consistent but right after pref-
erence change, she recognizes her mistake and changes her optimal poli-
cies. While, the sophisticated agent takes into account the future selves’
optimal decision even with preference change.
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3. Problem and HJB equation

The time-inconsistent agent wants to maximize the following lifetime
expected utility:

Et
[∫ T

t
D(t, s)u(c(s))ds+D(t, T )B(T,X(T ))

]
,

where Et[·] is a conditional expectation at time t and D(t, s), s ≥ t is
a hyperbolic discounting factor given in (2.2). B(T,X(T )) is a bequest
function given at final time T . We assume that τt < T so that the
time-inconsistent agent’s value function is given by

V (t,X(t)) = max
c(u),Π(u)

Et
[∫ t+τt

t
e−δ(s−t)u(c(s))ds+ β

∫ T

t+τt

e−δ(s−t)u(c(s))ds

(3.1)

+βe−δ(T−t)B(T,X(T ))
]
,(3.2)

where Π(u) = (π0(u), π1(u), π2(u)). Notice that X(T ) is the wealth at
final time T . If we regard the bequest function as the value function
of the time consistent agent with a subjective discount factor δ and an
initial wealth X(T ), then the value function in (3.1) is exactly same as
the following problem with an infinite time horizon:

Ṽ (X(t)) = max
c(u),Π(u)

Et
[∫ t+τt

t
e−δ(s−t)u(c(s))ds+ β

∫ ∞
t+τt

e−δ(s−t)u(c(s))ds

]
.

(3.3)

We suppose the time T is a planning fixed time and the bequest function
is defined by B(T,X(T )) = X(T )1−γ/Mγ(1− γ), where M is a positive
constant.

Now, we transform the nominal wealth dynamics in (2.1) into the
real terms. Let us denote by X(t) the real wealth process, X̄(t)/P (t),
and c(t) by the real consumption rate, c(t)/P (t). By Îto’s formula, we
obtain the real wealth dynamics in the following lemma.

Lemma 3.1. The inflation-adjusted wealth process X(t) has its dy-
namics as

dX(t) = (rX(t)− π0(t)µ0X(t) + π2(t)µ2X(t)− c(t))dt(3.4)

+ (π2(t)X(t)(σs − ρσp)− π0(t)X(t)ρσp)dW (t)(3.5)

−
√

1− ρ2σp(π2(t) + π0(t))X(t)dZ(t),

where µ0 ≡ r + µp −R− σ2
p and µ2 ≡ µs − r − ρσsσp − µp + σ2

p.
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Then, the sophisticated agent’s problem is to find the value function
defined in (3.1) subject to the budget constraint (3.4). For simplicity,
let us rewrite the wealth dynamics as follows.

dX(t) = f(t, c(t), π0(t), π2(t))dt+ g1(π0(t), π2(t))dW (t)

+ g2(X(t), π0(t), π2(t))dZ(t),

where

f(t, c(t), π0(t), π1(t), π2(t)) = rX(t)− π0(t)µ0X(t) + π2(t)µ2X(t)− c(t)
g1(π0(t), π2(t)) = π2(t)X(t)(σs − ρσp)− π0(t)X(t)ρσp

g2(X(t), π0(t), π2(t)) = −
√

1− ρ2σp(π2(t) + π0(t))X(t).

Thus, we can derive the HJB(Hamilton-Jacobi-Bellman) equations
for the sophisticated agents. For better understanding, let us first con-
sider the HJB equations for time-consistent and näıve agent first. From
the standard argument of dynamic programming principle, the value
function of a time consistent agent with budget constraint (3.4), V c(t,X(t)),
should satisfy the following HJB equation:

δV c(t,X(t))− V c
t = max

c(t),Π(t)

{
u(c(t)) + V c

x f +
1

2
V c
xx(g2

1 + g2
2)

}
,(3.6)

where Vt, Vx, and Vxx represent the partial derivatives. We can obtain
the solution to the HJB equation (3.6) by using the conjectured form:

V c(t,X(t)) = b(t)
1−γX(t)1−γ .

Let us denote by V N (t,X(t)) the value function of näıve agent. The
näıve agent believes that her future selves are time-consistent so there
would be no preference change in the future. Thus, the continuation
value at the time of preference change is proportional to the time con-
sistent agent’s value function V c(t,X(t)) and it becomes βV c(t,X(t)).
Since the intensity of preference change is given by λ, the HJB equation
for a näıve agent is obtained from

δV N (t,X(t))− V N
t

= max
c(t),Π(t)

{
u(c(t)) + V N

x f +
1

2
V N
xx(g2

1 + g2
2) + λ(βV c − V N )

}
,

with boundary condition V N (T,X(T )) = B(T,X(T )).
Contrast to the case of näıve agent, the sophisticated agent takes into

account the preference change of her future selves so the optimal con-
sumption and portfolios become time-consistent. Due to the difference
of the values between current and future selves, however, it is difficult
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to derive the HJB equation in the standard way. We obtain the HJB
equation for the sophisticated agent in the following lemma.

Proposition 3.2. The sophisticated agent’s value function defined
in (3.1) should satisfy the following HJB equation:
(3.7)

δV S(t,X(t))−V S
t +K(t,X(T )) = max

c(t),Π(t)

{
u(c(t)) + V S

x f +
1

2
V S
xx(g2

1 + g2
2)

}
,

with V S(T,X(T )) = B(T,X(T )). The function K(t,X(T )) is given by

(3.8) K(t,X(t)) = λ(1− β)E
[∫ T

t
e−(λ+δ)(s−t)u(c∗(s))ds

]
,

where c∗(s) is the time-consistent optimal consumption rate.

Proof. To derive the HJB equation of the sophisticated agent in finite
horizon, we borrow the idea of [12]. All the procedures are same except
for the wealth dynamics. So we briefly explain the derivation of the
HJB equation in finite horizon as follows. We consider the discrete time
version over [0, T ] with n steps and width length ε. Then, the wealth
dynamics becomes X(t+ ε) = X(t) + f(t)ε+ g1(t)(W (t+ ε)−W (t)) +
g2(t)(Z(t+ ε)−Z(t)). Let us denote T = nε, t = jε,X(jε) = Xj , c(jε) =
cj , V (jε, wj) = Vj , and (π0(jε), π1(jε), π2(jε)) = Πj .

Now we consider a backward induction. At final time T , we have
Vn = B(T,X(T )) and at time (n−1)ε, the discounted value of Vn would
be βe−δεVn so, the value function Vn−1 is defined by

Vn−1 = max
cn−1,Πn−1

E
[
u(cn−1)ε+ βe−δεVn

]
.

Let us denote by ūn−1 the utility optimally chosen at n−1, i.e., ūn−1((n−
1)ε,Xn−1) = un−1((n− 1)ε, c∗n−1,Π

∗
n−1). Then the value function of the

self at time (n− 2)ε is given by

Vn−2 = max
cn−2,Πn−2

E
[
u(cn−2)ε+D(0, ε)ūn−1ε+ βe−2δεVn

]
.

Consequently, ūj(jε,Xj) = uj(jε, c
∗
j ,Π

∗
j ), j = 0, 1, 2, · · ·n − 1, and the

value function Vj should satisfy

Vj = max
cj ,Πj

E
[
u(cj)ε+ Σn−j−1

i=1 D(0, iε)ūj+iε+ βe−(n−j)δεVn

]
,

with Vj+1 = E
[
Σn−j−2
i=1 D(0, iε)ūj+i+1ε+ βe−(n−j−1)δεVn

]
.
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Since eδε ≈ 1 + δε+ o(ε), we have

(1 + δε)Vj = max
cj ,Πj

E
[
(1 + δε)u(cj)ε+ (1 + δε)Σn−j−1

i=1 D(0, iε)ūj+iε

+βe−(n−j−1)δεVn

]
.

By substracting Vj+1 and divided by ε on both sides, we have

Vj − Vj+1

ε
+ δVj = max

cj ,Πj
E [(1 + δε)u(cj)

+Σn−j−1
i=1

(
eδεD(0, iε)−D(0, (i− 1)ε)

)
ūj+i +

o(ε)

ε

]
.

The second term in the right-hand side can be calculated by

E
[
Σn−j−1
i=1

(
eδεD(0, iε)−D(0, (i− 1)ε)

)
ūj+i

]
= Σn−j−1

i=1

(
eδεe−δiε((1− β)e−λiε + β)

−e−δ(i−1)ε((1− β)e−λ(i−1)ε + β)
)
· E[ūj+i]

= Σn−j−1
i=1 e−δ(i−1)ε(1− β)e−λiε(1− e−λε) · E[ūj+i]

= −Σn−j−1
i=1 λ(1− β)e−(δ+λ)iεεeδε · E[ūj+i]

= −Σn−j−1
i=1 λ(1− β)e−(δ+λ)iε · E[ūj+i]ε,

where the second equality holds because E[D(0, iε)] = e−δiε(e−λiε · 1 +

(1− e−λiε)β). Finally, since E
[
Vj+1−Vj

ε

]
= Vt +Vxf + 1

2(g2
1 + g2

2)Vxx and

by letting ε→ 0, we obtain the HJB equation in (3.7).

Note that the HJB equation for the sophisticated agent can be easily
extended to the problem with an infinite time horizon, where the value
function is independent of time t. We summarize the HJB equation
in the case of the problem with an infinite time horizon in the next
corollary.

Corollary 3.3. The HJB equation of sophisticated agent’s problem
in infinite-time horizon is obtained from

δṼ S(X(t)) + K̃(X(t)) = max
ct,Π(t)

{
u(c(t)) + Ṽ S

x f +
1

2
Ṽ S
xx(g2

1 + g2
2)

}
,

(3.9)

where

K̃(X(t)) = λ(1− β)E
[∫ ∞

t
e−(λ+δ)(s−t)u(c∗∗(s))ds

]
,
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and c∗∗(s) is the time-consistent optimal consumption rate which satis-
fies (3.9).

4. Optimal policies

We derive the optimal consumption and investment when a CRRA
utility function is imposed, i.e., u(c(t)) = c(t)1−γ/(1 − γ). Then the
FOCs(first order conditions) for c∗(t), π∗0(t), π∗2(t) in the HJB equation
(3.7) are determined by

c∗(t)−γ − Vx = 0,

Vxµ0X(t) + VxxX
2(t)(π∗2σs − ρσp(π∗2 + π∗0)(−ρσp)

+ (1− ρ2)σ2
p(π
∗
2 + π∗0)) = 0,

Vxµ2X(t) + VxxX
2(t)(π∗2σs − ρσp(π∗2 + π∗0))(σs − ρσp)

+ (1− ρ2)σ2
p(π
∗
2 + π∗0) = 0.

To obtain the closed-form solution, we conjecture the solution as fol-

lows: V (t,X(t)) = h(t)X(t)1−γ

1−γ . Then the partial derivatives and bound-

ary condition are given by

Vt = h′(t)
X(t)1−γ

1− γ
, Vx = h(t)X(t)−γ , Vxx = −γh(t)X(t)−γ−1, h(T ) = 1/Mγ .

By substituting the partial derivatives into FOCs, we obtain the optimal

consumption rate from c∗(t) = h(t)
− 1
γX(t) and portfolios from

π∗0(t) =
1

γσsσp(1− ρ2)

(
ρσs − σp

σs
Ps −

σs − ρσp
σp

PI

)
,

π∗2(t) =
1

γσs(1− ρ2)

(
Ps
σs
− ρPI

σp

)
,

where Ps ≡ µs − R − ρσsσp and PI ≡ µp + r − R − σ2
p. Notice that

Ps and PI represent risk-adjusted excess premiums of risky asset and
index bond respectively. Since π∗0(t) + π∗1(t) + π∗2(t) = 1, we also have

π∗1(t) = 1 + 1
γσp(1−ρ2)

(
PI
σp
− ρPs

σs

)
. As we can see, the time-inconsistency

does not affect the optimal portfolio ratios at all.
On the other hand, to obtain the optimal consumption rate, it is

necessary to calculate the function K(t,X(t)) in Proposition 3.2. We
summarize the results in the following proposition.
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Proposition 4.1. The optimal consumption rate of the sophisticated
agent is given by

c∗(t) = h(t)
− 1
γX(t),

where h(t) satisfies the following integro-differential equation

h′(t) = h(t)(δ − (1− γ)(r +A))− γh(t)
− 1−γ

γ

+ λ(1− β)

∫ T

t
e−α(s−t)−(1−γ)

∫ s
t h(u)duh(s)

− 1−γ
γ ds,

with h(T ) = 1/Mγ . The coefficients are determined by

A ≡
Ps − µp + σ2

p

γσs(1− ρ2)

(
Ps
σs
− ρPI

σp

)
− PI
γσsσp(1− ρ2)

(
ρσs − σp

σs
Ps −

σs − ρσp
σp

PI

)
− 1

2
γ(σ2

1 + σ2
2),

α = λ+ δ − (1− γ)(r +A),

σ1 =
1

γ(1− ρ2)

(
Ps
σs
− ρPI

σp

)
− ρ

γσs(1− ρ2)

(
ρσs − σp

σs
Ps −

σs − ρσp
σp

PI

)
,

σ2 = −
√

1− ρ2σp
γσs(1− ρ2)

(
ρσs − σp

σs
Ps −

σs − ρσp
σp

PI

)
.

Proof. For given A, σ1 and σ2 defined above, the wealth dynamics
can be rewritten as

dX(t) =X(t)

(
r − h(t)

− 1
γ +A+

1

2
γ(σ2

1 + σ2
2)

)
dt(4.1)

+X(t)σ1dW (t) +X(t)σ2dZ(t),

By substituting the partial derivatives into the HJB equation (3.7) and
this wealth dynamics, we have

X(t)1−γ

1− γ
(δh(t)− h′(t)) +K(t,X(t))(4.2)

=
X(t)1−γ

1− γ

{
h(t)

− 1−γ
γ + (1− γ)h(t)

(
r − h(t)

− 1
γ +A

)}
,

with h(T ) = 1/Mγ .

Now it is suffice to find the function K(t,X(t)) in (3.8). The wealth
dynamics in (4.1) represents the time-consistent wealth trajectory of the
sophisticated agent and it follows geometric Brownian motion. Thus, we
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have

d(X(t)1−γ) = (1− γ)X(t)−γdX(t)− 1

2
γ(1− γ)X(t)−γ−1(dX(t))2

= (1− γ)X(t)1−γ
(

(r − h(t)
− 1
γ +A)dt+ σ1dW (t) + σ2dZ(t)

)
,

which implies that for s > t,

Et
[
X(s)1−γ] = X(t)1−γEt

[
exp

{
(1− γ)

∫ s

t
(r − h(u)

− 1
γ +A)du

}]
.

Therefore the function K(t,X(t)) is given by

K(t,X(t)) = λ(1− β)Et

[∫ T

t
e−(λ+δ)(s−t)h(s)

− 1−γ
γ X(s)1−γ

1− γ
ds

]

= λ(1− β)

∫ T

t
e−(λ+δ)(s−t)h(s)

− 1−γ
γ Et[X(s)1−γ ]

1− γ
ds

=
λ(1− β)X(t)1−γ

1− γ

∫ T

t
e−α(s−t)−(1−γ)

∫ s
t h(u)

− 1
γ duh(s)

− 1−γ
γ ds,

where α is given in Proposition 3.2. If we plugin K(t,X(t)) to the HJB
equation (4.2), then the fully nonlinear integro-differential equation for
h(t) is derived.

In an infinite time horizon (T → ∞), we further assume that the
value function in (3.3) satisfies the transversality condition as follows.

lim
T→∞

E[e−δtṼ S(X(t))] = 0.

Then the conjectured value function is time independent and supposed

to have the following form: Ṽ S(X(t)) = X(t)1−γ

mγ(1−γ) . The optimal consump-

tion rate is m∗X(t) for a certain constant m∗, and the portfolio ratios

are exactly same as those in a finite horizon case. The function K̃(X(t))
can also be obtained from

K̃(X(t)) =
λ(1− β)X(t)1−γ

1− γ

∫ ∞
t

e−((λ+δ)−(1−γ)(r−m∗+A))(s−t)m∗1−γds.

We summarize the optimal consumption rate in the case of infinite time
horizon.

Corollary 4.2. When γ 6= 1, λ > 0, 0 < β < 1 and T → ∞, the
optimal consumption rate of the sophisticated agent is given by

c∗(t) = m∗X(t),
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where m∗ satisfies the following algebraic equation

δ − (1− γ)(r +A) +
λ(1− β)m∗

λ+ δ − (1− r)(r −m∗ +A)
= γm∗.

5. Conclusion

We investigates the optimal consumption and investment problem of
the time-inconsistent agent in the presence of inflation risk. We derive
the semi-analytic solution in the sense that the solution should satisfy
an integro-differential equation. We also extend the result into the prob-
lem in an infinite horizon, and obtain the closed-form solution. For the
sophisticated agent, the inflation risk plays an important role in deter-
mining the consumption rate.
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